A Revolutionary Approach to High Energy Density, Low-Cost Aqueous Li/S Batteries

Technology Overview

- Li₂S is > 3,000 times more more soluble in water than in non-aqueous electrolyte
- Superb solubility of Li₂S and higher polysulfides greatly improve reversibility of positive electrode
- Aqueous solutions of Li₂S_x have 50 times higher Li⁺ conductivity than non-aqueous analogues
- Aqueous Li/S battery chemistry improves all aspects of cell performance relative to nonaqueous electrolyte

TEAM: PolyPlus Battery Company

Steven J. Visco, CEO, Svisco@polyplus.com Eugene Nimon, Dir R&D, Enimon@polyplus.com

Current Status

- Aqueous polysulfides can be blended to increase the ionic conductivity, chemical stability, solubility of both Li₂S and Li₂S_x species
- Aqueous Li/S cells can be cycled at exceptionally high positive electrode capacities with no evidence of parasitic H₂ evolution
- PolyPlus identified and optimized highly porous (and lightweight) hydrophilic carbon cloth structure for aqueous Li/S cells
- PolyPlus developed a unique high capacity PLE to match the aqueous polysulfide electrode
- Thin, flexible solid-state anodes are necessary to achieve 600 Wh/l, 400 Wh/kg target

Project Statistics

Award Amount	\$4.5 M
Award Timeline	2/6/2013 – 3/31/2016
Next Stage Target	600 Wh/I, 400 Wh/kg (10 Ah)
Partners Sought	Strategic Investors

Aqueous Li-S Cell

- Pure H₂O is not good enough for high performance cells
- PolyPlus found that blending of H₂O and a non-aqueous solvent greatly improves Li-S cell performance
- Blended catholytes are chosen with the following metrics:

Solid Electrolyte membrane hydrophilic high porosity carbon must have high fraction of mesopores and macropores (~ 90% open porosity) Ultra-high capacity $(10 \text{ to } 30 \text{ mAh/cm}^2)$ capable of dissolving Li₂S to Li₂S₆

 $\sigma = 10^{-4}$ to 10^{-3} S/cm at rt must be stable to aqueous polysulfides (no impedance rise over 1000's of hours)

- 1. Electrochemical stability no evidence of oxidation or reduction of the electrolyte blend over the potential range of interest
- 2. Ability to dissolve high concentrations of lithium polysulfides (Li₂S_x)
- 3. High ionic conductivity of Li₂S_x solutions in the range of 10 MS to 17 MS
- 4. Chemical stability (no precipitation or color change over several months of storage)
- 5. Reversible cycling of high capacity Li₂S_x in Li-S laboratory cell using carbon cloth electrode

Hydrophilic Carbon Matrix with Meso and Macro Porosity is Critical to Li-S Cell Performance SEM Images of 500 µm Thick Carbon Cloth (Grade 2, Japan)

Comparison of Integral Pore Size Distribution Curves of Two Carbon Cloths (500 um Grade 2 and 350 um Grade 1,)

Determination of Operational Voltage Stability Window: Chronoamperometry on Carbon Electrode in PS Electrolytes

Carbon cloth electrode

Cycling Performance of Cells with 12 M S Aqueous Catholyte 450 µm Carbon Cloth Cathode Grade 2.0

Catholyte: 12 M S Li₂S₅ in 20% 2-non-aqueous, 80% H₂O

Energy Density Projections

Tech to Market

- PolyPlus is building team now
- Approach is highly scalable at low cost
- Will be enabling for Li/S and other chemistries

